Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 14(9): e15829, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35916241

RESUMO

Whole-exome sequencing of two patients with idiopathic complex neurodevelopmental disorder (NDD) identified biallelic variants of unknown significance within FIBCD1, encoding an endocytic acetyl group-binding transmembrane receptor with no known function in the central nervous system. We found that FIBCD1 preferentially binds and endocytoses glycosaminoglycan (GAG) chondroitin sulphate-4S (CS-4S) and regulates GAG content of the brain extracellular matrix (ECM). In silico molecular simulation studies and GAG binding analyses of patient variants determined that such variants are loss-of-function by disrupting FIBCD1-CS-4S association. Gene knockdown in flies resulted in morphological disruption of the neuromuscular junction and motor-related behavioural deficits. In humans and mice, FIBCD1 is expressed in discrete brain regions, including the hippocampus. Fibcd1 KO mice exhibited normal hippocampal neuronal morphology but impaired hippocampal-dependent learning. Further, hippocampal synaptic remodelling in acute slices from Fibcd1 KO mice was deficient but restored upon enzymatically modulating the ECM. Together, we identified FIBCD1 as an endocytic receptor for GAGs in the brain ECM and a novel gene associated with an NDD, revealing a critical role in nervous system structure, function and plasticity.


Assuntos
Transtornos do Neurodesenvolvimento , Receptores de Superfície Celular , Animais , Humanos , Camundongos , Endocitose , Matriz Extracelular/metabolismo , Transtornos do Neurodesenvolvimento/genética , Receptores de Superfície Celular/metabolismo
2.
Pain ; 162(9): 2349-2365, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448751

RESUMO

ABSTRACT: Endometriosis (ENDO) and interstitial cystitis/bladder pain syndrome (IC/BPS) are chronic pain conditions for which better treatments are urgently needed. Development of new therapies with proven clinical benefit has been slow. We have conducted a review of existing preclinical in vivo models for ENDO and IC/BPS in rodents, discussed to what extent they replicate the phenotype and pain experience of patients, as well as their relevance for translational research. In 1009 publications detailing ENDO models, 41% used autologous, 26% syngeneic, 18% xenograft, and 11% allogeneic tissue in transplantation models. Intraperitoneal injection of endometrial tissue was the subcategory with the highest construct validity score for translational research. From 1055 IC/BPS publications, most interventions were bladder centric (85%), followed by complex mechanisms (8%) and stress-induced models (7%). Within these categories, the most frequently used models were instillation of irritants (92%), autoimmune (43%), and water avoidance stress (39%), respectively. Notably, although pelvic pain is a hallmark of both conditions and a key endpoint for development of novel therapies, only a small proportion of the studies (models of ENDO: 0.5%-12% and models of IC/BPS: 20%-44%) examined endpoints associated with pain. Moreover, only 2% and 3% of publications using models of ENDO and IC/BPS investigated nonevoked pain endpoints. This analysis highlights the wide variety of models used, limiting reproducibility and translation of results. We recommend refining models so that they better reflect clinical reality, sharing protocols, and using standardized endpoints to improve reproducibility. We are addressing this in our project Innovative Medicines Initiative-PainCare/Translational Research in Pelvic Pain.


Assuntos
Cistite Intersticial , Endometriose , Cistite Intersticial/terapia , Feminino , Humanos , Dor Pélvica/terapia , Reprodutibilidade dos Testes , Pesquisa Translacional Biomédica
3.
Mar Drugs ; 15(6)2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28635651

RESUMO

Visceral pain is very common and represents a major unmet clinical need for which current pharmacological treatments are often insufficient. Tetrodotoxin (TTX) is a potent neurotoxin that exerts analgesic actions in both humans and rodents under different somatic pain conditions, but its effect has been unexplored in visceral pain. Therefore, we tested the effects of systemic TTX in viscero-specific mouse models of chemical stimulation of the colon (intracolonic instillation of capsaicin and mustard oil) and intraperitoneal cyclophosphamide-induced cystitis. The subcutaneous administration of TTX dose-dependently inhibited the number of pain-related behaviors in all evaluated pain models and reversed the referred mechanical hyperalgesia (examined by stimulation of the abdomen with von Frey filaments) induced by capsaicin and cyclophosphamide, but not that induced by mustard oil. Morphine inhibited both pain responses and the referred mechanical hyperalgesia in all tests. Conditional nociceptor­specific Nav1.7 knockout mice treated with TTX showed the same responses as littermate controls after the administration of the algogens. No motor incoordination after the administration of TTX was observed. These results suggest that blockade of TTX-sensitive sodium channels, but not Nav1.7 subtype alone, by systemic administration of TTX might be a potential therapeutic strategy for the treatment of visceral pain.


Assuntos
Medição da Dor/efeitos dos fármacos , Tetrodotoxina/farmacologia , Dor Visceral/tratamento farmacológico , Analgésicos/farmacologia , Animais , Capsaicina/farmacologia , Colo/efeitos dos fármacos , Colo/metabolismo , Cistite/tratamento farmacológico , Cistite/metabolismo , Modelos Animais de Doenças , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Masculino , Camundongos , Camundongos Knockout , Morfina/farmacologia , Mostardeira , Nociceptores/metabolismo , Óleos de Plantas/farmacologia , Canais de Sódio/metabolismo , Dor Visceral/metabolismo
4.
EMBO Mol Med ; 7(5): 670-87, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25802402

RESUMO

Primary coenzyme Q10 (CoQ10) deficiency is due to mutations in genes involved in CoQ biosynthesis. The disease has been associated with five major phenotypes, but a genotype-phenotype correlation is unclear. Here, we compare two mouse models with a genetic modification in Coq9 gene (Coq9(Q95X) and Coq9(R239X)), and their responses to 2,4-dihydroxybenzoic acid (2,4-diHB). Coq9(R239X) mice manifest severe widespread CoQ deficiency associated with fatal encephalomyopathy and respond to 2,4-diHB increasing CoQ levels. In contrast, Coq9(Q95X) mice exhibit mild CoQ deficiency manifesting with reduction in CI+III activity and mitochondrial respiration in skeletal muscle, and late-onset mild mitochondrial myopathy, which does not respond to 2,4-diHB. We show that these differences are due to the levels of COQ biosynthetic proteins, suggesting that the presence of a truncated version of COQ9 protein in Coq9(R239X) mice destabilizes the CoQ multiprotein complex. Our study points out the importance of the multiprotein complex for CoQ biosynthesis in mammals, which may provide new insights to understand the genotype-phenotype heterogeneity associated with human CoQ deficiency and may have a potential impact on the treatment of this mitochondrial disorder.


Assuntos
Ataxia/patologia , Variação Genética , Genótipo , Doenças Mitocondriais/patologia , Debilidade Muscular/patologia , Ubiquinona/deficiência , Animais , Modelos Animais de Doenças , Hidroxibenzoatos/administração & dosagem , Hidroxibenzoatos/toxicidade , Mamíferos , Camundongos , Camundongos Transgênicos , Mutação de Sentido Incorreto , Ubiquinona/genética
5.
J Pain ; 13(11): 1107-21, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23063344

RESUMO

UNLABELLED: Sigma-1 (σ(1)) receptors play a role in different types of pain and in central sensitization mechanisms; however, it is unknown whether they are involved in chemotherapy-induced neuropathic pain. We compared the ability of paclitaxel to induce cold (acetone test) and mechanical (electronic Von Frey test) allodynia in wild-type (WT) and σ(1) receptor knockout (σ(1)-KO) mice. We also tested the effect on paclitaxel-induced painful neuropathy of BD-1063 (16-64 mg/kg, subcutaneously) and S1RA (32-128 mg/kg, subcutaneously), 2 selective σ(1) receptor antagonists that bind to the σ(1) receptor with high affinity and competitively. The responses to cold and mechanical stimuli were similar in WT and σ(1)-KO mice not treated with paclitaxel; however, treatment with paclitaxel (2 mg/kg, intraperitoneally, once per day during 5 consecutive days) produced cold and mechanical allodynia and an increase in spinal cord diphosphorylated extracellular signal-regulated kinase (pERK) in WT but not in σ(1)-KO mice. The administration of BD-1063 or S1RA 30 minutes before each paclitaxel dose prevented the development of cold and mechanical allodynia in WT mice. Moreover, the acute administration of both σ(1) receptor antagonists dose dependently reversed both types of paclitaxel-induced allodynia after they had fully developed. These results suggest that σ(1) receptors play a key role in paclitaxel-induced painful neuropathy. PERSPECTIVE: Antagonists of the σ(1) receptor may have therapeutic value for the treatment and/or prevention of paclitaxel-induced neuropathic pain. This possibility is especially interesting in the context of chemotherapy-induced neuropathy, where the onset of nerve damage is predictable and preventive treatment could be administered.


Assuntos
Antineoplásicos Fitogênicos , Neuralgia/induzido quimicamente , Paclitaxel , Receptores sigma/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Encéfalo/metabolismo , Temperatura Baixa , Feminino , Hiperalgesia/induzido quimicamente , Hiperalgesia/fisiopatologia , Sistema de Sinalização das MAP Quinases/fisiologia , Membranas/efeitos dos fármacos , Membranas/metabolismo , Camundongos , Camundongos Knockout , Morfolinas/farmacologia , Entorpecentes/metabolismo , Medição da Dor/efeitos dos fármacos , Pentazocina/metabolismo , Estimulação Física , Piperazinas/farmacologia , Equilíbrio Postural/efeitos dos fármacos , Pirazóis/farmacologia , Receptores sigma/agonistas , Receptores sigma/genética , Receptor Sigma-1
6.
Mar Drugs ; 10(2): 281-305, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22412801

RESUMO

Tetrodotoxin (TTX) is a potent neurotoxin that blocks voltage-gated sodium channels (VGSCs). VGSCs play a critical role in neuronal function under both physiological and pathological conditions. TTX has been extensively used to functionally characterize VGSCs, which can be classified as TTX-sensitive or TTX-resistant channels according to their sensitivity to this toxin. Alterations in the expression and/or function of some specific TTX-sensitive VGSCs have been implicated in a number of chronic pain conditions. The administration of TTX at doses below those that interfere with the generation and conduction of action potentials in normal (non-injured) nerves has been used in humans and experimental animals under different pain conditions. These data indicate a role for TTX as a potential therapeutic agent for pain. This review focuses on the preclinical and clinical evidence supporting a potential analgesic role for TTX. In addition, the contribution of specific TTX-sensitive VGSCs to pain is reviewed.


Assuntos
Analgésicos não Narcóticos/uso terapêutico , Neurotoxinas/uso terapêutico , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/metabolismo , Tetrodotoxina/uso terapêutico , Dor Aguda/tratamento farmacológico , Dor Aguda/imunologia , Dor Aguda/metabolismo , Animais , Humanos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuralgia/tratamento farmacológico , Neuralgia/imunologia , Neuralgia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Canais de Sódio/química , Canais de Sódio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...